Overall Curriculum Goals

In year 12 Students are taught AQA AS Mathematics

A Level Maths aims to encourage learners to:

- Answer questions that test the content synoptically
- apply the knowledge they have learnt throughout the course in unfamiliar areas

Half Term 1	Half Term 2	Half Term 3	Half Term 4	Half Term 5	Half Term 6
KEY IDEAS/CONCEPTS	KEY IDEAS/CONCEPTS	KEY IDEAS/CONCEPTS	KEY IDEAS/CONCEPTS	KEY IDEAS/CONCEPTS	KEY IDEAS/CONCEPTS
Algebra and Functions (T1)	Differentiation (T1)	Kinematics (T1)	Forces and Newtons First Law (T1)	Review + consolidate knowledge	
*Understand and use laws of indices	* Understand and use the	* Understand and use fundamental	*Understand the concept of a	learnt so far, practice applying	
*Manipulate surds and rationalise	derivative of f(x) as the gradient of	quantities and units in the SI	force; understand and use	knowledge to unfamiliar areas and	
the denominator	the tangent to the graph of y = f(x)	system: length, time, mass.	Newton's first law	prepare for Finals	
*Work with quadratic functions and	at a general point (x, y); the	Understand and use derived	* use F = ma for constant mass and		
their graphs; the discriminant of a	gradient of the tangent as a limit;	quantities and units: velocity,	constant force. Understand that		
quadratic function, including the	interpretation as a rate of change;	acceleration, force, weight	objects can be modelled as		
conditions for real and repeated	sketching the gradient function for	* understand positions described	particles Comment on the		
roots; completing the square;	a given curve; second derivatives;	relative to a given origin.	relevance of any modelling		
solution of quadratic equations	differentiation from first principles	Understand and describe the	assumptions made		
including solving quadratic	for small positive integer powers of	position of a particle through a	* Understand and use weight and		
equations in a function of the	x. Understand and use the second	combination of its initial position	motion in a straight line under		
unknown.	derivative as the rate of change of	and a displacement. Demonstrate	gravity; gravitational acceleration,		
*understand the relationship	gradient	an understanding of the	g, and its value in SI units to varying		
between the algebraic solution of	* Differentiate x ⁿ , for rational	relationship between the vector	degrees of accuracy.		
simultaneous equations and the	values of n, and related constant	quantities displacement and	* Understand and use Newton's		
points of intersection of the	multiples, sums and differences.	velocity and their associated scalar	third law; equilibrium of forces on a		
corresponding graphs. In the case of	* Apply differentiation to find	quantities distance and speed.	particle and motion in a straight		
one linear and one quadratic	gradients, tangents and normals,	Understand average speed and	line (restricted to forces in two		
equation, recognise the geometrical	maxima and minima and stationary	average velocity.	perpendicular directions or simple		
significance of the discriminant of	points, points of inflection. Identify	* Understand, use and interpret	cases of forces given as 2-D		
the resulting quadratic. Solve a pair	where functions are increasing or	graphs in kinematics for motion in a	vectors); application to problems		
of linear simultaneous equations	decreasing	straight line: displacement against	involving smooth pulleys and		
using a calculator		time and interpretation of gradient;	connected particles;		
*give the range of values which	Integration (T1)	velocity against time and			
satisfy more than one inequality.	* Know and use the Fundamental	interpretation of gradient and area	Binomial Distribution (T2)		
Illustrate regions on sketched	Theorem of Calculus	under the graph	*Understand and use simple,		
graphs, defined by inequalities.	* Integrate x ⁿ (excluding n = −1),	* Understand, use and derive the	discrete probability distributions		
Define algebraically inequalities that	and related sums, differences and	formulae for constant acceleration	(calculation of mean and variance		
are given graphically	constant multiples.	for motion in a straight line	of discrete random variables is		
	*Evaluate definite integrals; use a	* Use calculus in kinematics for	excluded), including the binomial		
Proof (T1)	definite integral to find the area	motion in a straight line	distribution, as a model; calculate		
 set out a clear proof with the 	under a curve. Understand that for		probabilities using the binomial		
correct use of symbols, such as =,	areas lying below the x-axis the	Trigonometry (T1)	distribution.		
$\Rightarrow \Leftarrow \Leftrightarrow, , , , j \equiv :$	definite integral will give the	* Understand and use the			
 understand that considering 	negative of the required value Find	definitions of sine, cosine and	Hypothesis Testing (T2)		
examples can be useful in looking	areas between curves and straight	tangent for all arguments; the sine	* Understand and apply the		
for structure, but this does not	lines	and cosine rules; the area of a	language of statistical hypothesis		
constitute a proof		triangle in the form 0.5absinC	testing, developed through a		
			binomial model: null hypothesis,		
			alternative hypothesis, significance		

		* Understand and use the sine,	level, test statistic, 1-tail test, 2-tail		
Coordinate Geometry (T2)	Vectors (T1)	cosine and tangent functions; their	test, critical value, critical region,		
*be able to solve problems using	*become familiar with both column	graphs, symmetries and periodicity.	acceptance region, p-value;		
gradients, midpoints and the	vectors and i, j notation, where i	*Use tan(x)=sin(x) / cos(x)	*Conduct a statistical hypothesis		
distance between two points,	and j are unit vectors in	$\sin^2 x + \cos^2 x = 1$	test for the proportion in the		
including the form y = mx + c and	perpendicular directions. know that	* Solve simple trigonometric	binomial distribution and interpret		
the forms $y = a$ and $x = b$ for	vectors may be used to describe	equations in a given interval,	the results in context. Understand		
horizontal and vertical lines. Know	translations of graph	including quadratic equations in sin,	that a sample is being used to make		
that the product of the gradients of	* Calculate the magnitude and	cos and tan and equations involving	an inference about the population		
two perpendicular lines is -1.	direction of a vector and convert	multiples of the unknown angle.	and appreciate that the significance		
Understand necessary and sufficient	between component form and		level is the probability of incorrectly		
conditions for a quadrilateral to be a	magnitude/direction form.		rejecting the null hypothesis		
square, rectangle, rhombus,	*Add vectors diagrammatically and	Descriptive Stats (T2)			
parallelogram, kite or trapezium and	perform the algebraic operations of	*Understand the terms 'population'			
be able to apply understanding of	vector addition and multiplication	and 'sample'. Use samples to make			
straight lines to these	by scalars, and understand their	informal inferences about the			
* Understand and use the	geometrical interpretations	population. Understand and use			
coordinate geometry of the circle	* Understand and use position	sampling techniques, including			
including using the equation of a	vectors: calculate the distance	simple random sampling and			
circle in the form $(x - a)^2 + (y - b)^2 =$	between two points represented by	opportunity sampling. Select or			
r ² ; completing the square to find	nosition vectors	critique sampling techniques in the			
the centre and radius of a circle; use	*Use vectors to solve problems in	context of solving a statistical			
the following properties: the angle	nure mathematics and in context	problem, including understanding			
in a semicircle is a right angle, the	including forces and kinematics	that different samples can lead to			
perpendicular from the centre to a		different conclusions about the			
chord bisects the chord, the radius		population			
of a circle at a given point on its	Polynomials and Functions (T2)	*Interpret diagrams for single-			
circumference is perpendicular to	* Understand and use graphs of	variable data, including			
the tangent to the circle at that	functions: sketch curves defined by	understanding that area in a			
point. Find the equation of a tangent	simple equations including	histogram represents frequency.			
or normal at a point	polynomial, $y = a/x$ and $y = a/x^2$	Connect to probability distributions			
	(including their vertical and	* Interpret scatter diagrams and			
Polynomials and Functions (T2)	horizontal asymptotes); interpret	regression lines for bivariate data,			
*Manipulate polynomials	algebraic solution of equations	including recognition of scatter			
algebraically, including expanding	graphically; use intersection points	diagrams which include distinct			
brackets and collecting like terms,	of graphs to solve equations.	sections of the population			
factorisation and simple algebraic	Understand and use proportional	(calculations involving regression			
division; use of the factor theorem.	relationships and their graphs	infermal interpretation of			
	* Understand the effect of simple	correlation Understand that			
	transformations on the graph of y =	correlation does not imply			
	f(x) including sketching associated	consistion			
	graphs: $y = af(x)$, $y = f(x) + a$, $y = f(x)$	* Interpret measures of central			
	+ a) and y = f(ax)	tendency and variation extending			
		to standard deviation. Reable to			
	Binomial Expansion (T2)	calculate standard deviation			
	* answer questions requiring the	including from summary statistics			
	tui binomial expansion of	* Recognise and interpret possible			
	expressions of the form (a+bx)",	outliers in data sets and statistical			
	where n is a small positive integer.	diagrams. Select or critique data			
	nowers of y (complete synapsics	presentation techniques in the			
	not required) Understand factorial	context of a statistical problem. Be			
		able to clean data, including dealing			
	1		1	1	·J

	notation and a Crond link to	with missing data annous and			
		with missing data, errors and			
	binomial probabilities	outliers.			
	Exponentials and Logs (T2)				
	* sketch and use simple	Probability (T2)			
	transformations of the graph of the	* Understand and use mutually			
	function a ^x (where a is a positive	exclusive and independent events			
	integer). Sketch and use simple	when calculating probabilities. Link			
	transformations of the graph of the	to discrete and continuous			
	function e ^x	distributions			
	* Know that the gradient of a ^{kx} is	* Understand and use conditional			
	agual to ko ^{kx} and honce understand	probability including the use of			
	equal to ke and hence understand	probability, including the use of			
	why the exponential model is	tree diagrams, venn diagrams, two-			
	suitable in many applications.	way tables. Understand and use the			
	* understand and be able to use	conditional probability formula			
	the equivalences: $y=a^x \Leftrightarrow \log_a x=y$	$P(A B) = \frac{P(A B)}{P(B)}$			
	and $y=e^x \Leftrightarrow lnx=y$. Know that the	P(B)			
	graph of y = ln x is a reflection in				
	the line $y=x$ of the graph of $y=e^x$.				
	Be able to perform simple single				
	transformations of the functions y=				
	e^x and y = ln x Be able to				
	manipulate logs and exponentials				
	within the solution to a problem.				
	*know and use laws of logs				
	*solve equations of the form a ^x =h				
	* reduce a non-linear relationship				
	to linear form. Plot a graph from				
	given data, drawing a line of best fit				
	given data, drawing a line of best fit				
	by eye and using it to calculate the				
	gradient and intercept to estimate				
	for unknown constant				
		Sequence o	f Teaching		
		(T1 & T2 ru	n parallel)		
Key Topics/Subtopics:	Key Topics/Subtopics:	Key Topics/Subtopics:	Key Topics/Subtopics:	Key Topics/Subtopics:	Key Topics/Subtopics:
Algebra + Functions (11)	Differentiation (11)	Kinematics (11)	Forces and Newtons Law (11)		
Indices	Understand the idea of	Quantities and units in	Newtons First Law		
• Surds	differentiation	mechanics	 Newtons Second Law 		
 Simultaneous Equations 	Differentiate	 position; displacement; 	 Weight and motion in a 		
 Quadratic Functions 	polynomials	distance travelled;	straight line under		
 Inequalities 	Application of	velocity; speed;	gravity		
	differentaition	acceleration.	 Newtons Third Law 		
Proof (T1)		• Use and interpret graphs			
		in kinematics			
Coordinate Geometry (T2)	Integration (T1)	 * formulae for constant 			
Straight lines	Know and use the	acceleration for motion	Binomial Distribution (T2)		
Circles	Fundamental Theorem	in a straight line	Calculate probabilities		
	of Calculus	Calculus in kinematics	using the Rinomial		
Polynomials and Eurotions (T2)	 Integrate vⁿ 		Distribution		
Polynomial manipulation					
 Polynomial manipulation 					

	Evaluate definite	rigonometry (11)			
	integrais; use a definite	 Sine, cosine and area of triangle 			
	integral to find the area	triangle	Using thesis Testing (T2)		
	under a curve	Sin, cos, tan graphs	Rypotnesis Testing (12)		
	Vectors (T1)	AS Level trig identities	Binomial Distribution		
	vectors (11)	Solve simple trig	Hypothesis testing		
	Use vectors in 2 and 3 dimensions	equations in degrees			
	 Magnitude and direction 				
		Descriptive Stats (12)			
	Vector addition and multiplication	Statistical sampling			
	nulliplication	 Data presentation and interrestation 			
	Posicion vectors and distance	Interpretation			
	Voctors in context				
	• vectors in context	Brobability (T2)			
		Mutually exclusive and			
	Polynomials and Eurotions (T2)	 Independent events 			
	Graphs of polynomials				
	Graphs of polynomials Transformations of	Conditional Probability			
	granhs				
	graphis				
	Binomial Expansion (T2)				
	• Expansion of (ax+h) ⁿ				
	Exponentials and Logs (T2)				
	 Graphs of v=a^x and v=e^x 				
	Know that the gradient				
	of e ^{kx} is equal to ke ^{kx}				
	• $v=a^x \Leftrightarrow \log a_x x= v$ and				
	$v=e^x \Leftrightarrow lnx=v.$				
	 laws of logs 				
	 solve equations of the 				
	form a ^x =b				
	 reduce a non-linear 				
	relationship to linear				
	form.				
		ILC: CONSOLIDAT	ON & RETRIEVAL		
ILC Half Term 1	ILC Half Term 2	ILC Half Term 3	ILC Half Term 4	ILC Half Term 5	ILC Half Term 6
GCSE recap – Indices, Surds, Solving	Half term 1 recall - Gradient	Half term 2 recall – integration,	Half term 3 recall – kinematics,	Half term 4 recall and preparation	
linear equations, rearranging	functions, trigonometry, straight	vectors, exponentials and logs,	probability, trigonometry, binomial	for Finals	
tormula, linear graphs, factorising	lines, circles, proof, polynomial and		expansion, forces		
quadratics and cubics, using the	factor theorem, differentiation,				
quadratic formula, completing the	curve sketching				
square, equation of a circle,					
algebraic division, graphs of cubics					
			JKILLJ		
Formativo Assossment Materiale					
i officiative Assessment ividteridis					

 Check Up and Interim MIB 	 Check Up and Interim MIB to go with each topic 								
Summative Assessment									
HT1	HT2	HT3	HT4	HT5	HT6				
 Chapter 1 (Algebra and Functions and Co- ordinate Geometry) Assessment 	 Chapter 2 (Polynomials and Functions) and chapter 4 (Calculus) Assessments 	 Chapter 5 Exponentials and Logs), Chapter 7 Kinematics) and Chapter 9 (Descriptive Stats) Assessments 	Chapter 3 (Trigonometry), Chapter 8 (Forces and Newtons Law), Chapter 10 (Binomial Distribution) and Chapter 11 Hypothesis Testing) Assessment	 Mock Finals (Full AS Exam. Paper 1 – 1.5 hours Pure and Mechanics, Paper 2 – 1.5 hours Pure and Stats. 	 Finals (Full AS Exam. Paper 1 – 1.5 hours Pure and Mechanics, Paper 2 – 1.5 hours Pure and Stats. 				
		Assessment Week F	Resit (as applicable)	•	·				
CEIAGS and Co-Curricular									
 UKMT Integral Maths Ritangle Team Competition SUMS - Steps to University for Maths Monthly Newsletter Introduction to STEP and Oxbridge style interviews in the Summer Term 									

Year 13

Overall Curriculum Goals

A Level Maths aims to encourage learners to:

• Answer questions that test the content synoptically

• apply the knowledge they have learnt throughout the course in unfamiliar areas

Half Term 1		Half Term 2			Half Term 3	Half Term 4	Half Term 5	Half Term 6
KEY IDEAS/CONCEPTS		KEY IDEAS/CONCEPTS		KEY IDEAS	CONCEPTS	KEY IDEAS/CONCEPTS	KEY IDEAS/CONCEPTS	KEY IDEAS/CONCEPTS
Trigonometry (T1)		Functions		Normal Dis	stribution	Mock Exams and Revision	Mock Exams (II) and revision	
•	Understand and use the	• Ur	nderstand and use	•	Understand and use the			
	definitions of sine,	со	omposite functions,		normal distribution as a			
	cosine and tangent for	inv	verse functions and		model; find			
	all arguments; the sine	th	neir graphs (B8)		probabilities using the			
	and cosine rules; the	• Ur	nderstand the effect		Normal distribution.			
	area of a triangle in the	of	f simple		Link to histograms,			
	form 0.5absinC (E1)	tra	ansformations on the		mean, standard			
•	Understand and use the	gra	raph of y = f(x)		deviation, points of			
	standard small angel	ine	cluding sketching		inflection and the			
	approximations of sine,	as	ssociated graphs; y =		binomial distribution			
	cosine and tangent (E2)	af	f(x), y = f(x) + a, y =		(N2)			
•	Understand and use the	f(x	x+a) and y = f(ax) and	•	Select an appropriate			
	sine, cosine and tangent	со	ombinations of these		probability distribution			
	functions; their graphs,	tra	ansformations (B9)		for a context, with			
	symmetries and	• Us	se of functions in		appropriate reasoning,			
	periodicity (E3)	m	odelling, including		including recognising			
•	Understand and use the	со	onsideration of		when the binomial or			
	definitions of secant,	lin	mitations and		Normal model may not			
	cosecant and cotangent	re	finements of the		be appropriate (N3)			
	and of arcsin, arccos and	m	odels (B11)	Hypothesis	s Testing			
	arctan; their	• Ur	nderstand and use the	•	Understand and apply			
	relationships to sine,	ра	arametric equations of		the language of			
	cosine and tangent;	cu	urves and conversion		statistical hypothesis			
	understanding their	be	etween Cartesian and		testing, developed			
	graphs; their ranges and	ра	arametric forms (C3).		through a binomial			
	domains (E4)	General Bino	omial Expansion		model: null hypothesis,			
•	Understand and use the	• Ur	nderstand and use the		alternative hypothesis,			
	trigonometric identities	biı	nomial expansion of		significance level, test			
	for tangent in terms of	(a-	+bx)^n for positive		statistic, 1-tail test, 2-			
	sine and cosine and for	int	teger n; the notations		tail test, critical value,			
	the Pythagorean	n!	and nCr; link to		critical region,			
	identities using sine and	biı	nomial probabilities.		acceptance region, p-			
	cosine and their	Ex	ctend to any rational		value; extend to			
	associated forms (E5)	n,	, including its use for		correlation coefficients			
•	Understand and use	ар	oproximation. (D1)		as measures of how			
	double angle formulae;	• M	lanipulate polynomials		close data points lie to a			
	sue of formulae for	alg	gebraically, including		straight line and be able			
	sin(A+B), sin(A-B),	ex	kpanding brackets and		to interpret a given			
	cos(A+B), cos(A-B),	co	ollecting like terms,		correlation coefficient			

	tan(A+B) and tan(A-B);	factorisation and simple		using a given p-value or		
	understand geometric	algebraic division; use		critical value		
	proofs of these	of the factor theorem.		(calculation of		
	formulae. Understand	Simplify rational		correlation coefficients		
	and use expressions in	expressions including by		is excluded) (O1)		
	harmonic form (E6)	factorising and	•	Conduct a statistical		
•	Solve simple	cancelling, and		hypothesis test for the		
	trigonometric equations	algebraic division by		mean of a Normal		
	in a given interval	linear expressions only)		distribution with		
	including quadratic	(B6)		known given or		
	equations in sin cos and	Decompose rational		assumed variance and		
	tan and equations	functions into partial		interpret the results in		
	involving multiples of	fractions (denominators		context (03)		
	the unknown angle (E7)	nactions (denominators	Numorical	mothods and		
		than squared linear	intogratio			
•	construct proofs	torms and with no more	integratio	leaste reate of f(v)=0 by		
	Involving trigonometric	then three terms	•	Locate roots of I(x)=0 by		
	functions and identities	than three terms,		considering changes of		
	(E8)	humerators constant or		sign of f(x) in an interval		
•	Use trigonometric	linear) (BLU)		of x on which f(x) is		
	functions to solve	Sequences and Series		sufficiently well-		
	problems in context,	Work with sequences		benaved. Understand		
	including problems	including those given by		now change of sign		
	vectors, kinematics and	a formula for the nth		Calua amatiana		
-	forces (E9)	term and those	•	Solve equations		
Functions	(11)	generate by a simple		approximately using		
•	Understand and use	relation of the form $\frac{1}{2}$		simple iterative		
	graphs of functions;	xn+1 = f(xn); increasing		methods; be able to		
	sketch curves defined by	sequences; decreasing		draw associated		
	simple equations	sequences; periodic		cobweb and staircase		
	including polynomials,	sequences (D2)		diagrams. Solve		
	the modulus of a linear	Understand and use		equations using the		
	function, reciprocal	sigma notation for sums		Newton-Raphson		
	functions including their	of series (D3)		method and other		
	vertical and norizontal	Understand and Work		recurrence relations of		
	asymptotes; interpret	with arithmetic		the form $xn+1 = g(xn)$.		
	algebraic solution of	sequences and series,		understand now such		
	equations graphically;	for ath torm and the		liedowstowed and use		
	of graphs to solve	for him term and the	•	onderstand and use		
	or graphs to solve	sum to n terms (D4)		fumerical integration of		
	and use propertional	Understand and work with geometric		use of the transium		
	relationships and their	with geometric		use of the trapezium		
	graphs (P7)	sequences and series		annrovimate area under		
Difforenti	graphs. (D7)	for the nth terms and		the surve and limits		
Differentia	Linderstand and use the	the sum of a finite		that it must lie between		
•	dorivative of $f(y)$ as the	the sum of a limite		(13)		
	aradiant of the tongent	geometric series,	_	(13)		
	gradient of the tangent to the graph of $y = f(y)$ of	modulus of r < 1	•	to colvo problems in		
	to the graph of $y = I(x)$ at	modulus notation (DE)		contaxt (IA)		
	a seneral point (x,y); the		Forces and	Newtons Law (T2)		
	as a limit: interpretation	 Use sequences and sories in modelling (DC) 	Forces and	Understand the concert		
	as a rate of change.	Normal Distribution	•	of a force: understand		
	sketching the gradient			or a force, understand		

function for a given curve; second derivatives; differentiation from frsit principles for small positive integer powers of x and for sinx and cosx. Understand and use the second derivative as the rate of change of the gradient;connection to convex and concave sections of curves and points of inflection. (G1)

Differentiate x^n, for rational values of n, and related constant multiples, sums and differences. Differentiate e^(kx) and a^(kx), sinkx, coskx and tankx, related sums, differences and constant multiples. Understand and use the derivative of Inx (G2)

٠

- Apply differentiation to find gradients, tangents and normal, maxima and minima and stationary points, points of inflection. Identify where functions are increasing or decreasing (G3)
- Differentiate using the product rule, the quotient rule and the chain rule, including problems involving connected rates of change and inverse functions (G4)

Implicit Differentiation and Parametric Functions (T2)

- Understand and use the parametric equations of curves and conversion between Cartesian and parametric forms (C3)
- Use parametric
 equations in modelling

 Understand and use simple, discrete probability distributions (calculation of mean and variance of discrete random variables is excluded), including the binomial distribution, as a model; calculate probabilities using the binomial distribution (N1)

- Carry our simple cases of integration by substitution and integration by parts;
 - understand these methods as the inverse processes of the chain and product rules respectively. (H5)
- Integrate using partial fractions that are linear in the denominator (H6)

Differential Equations (T2)

- Construct simple differential equations in pure mathematics and in context (contexts may include kinematics, population growth and modelling the relationship between price and demand) (G6)
 Evaluate the analytical
 - Evaluate the analytical solution of simple first order differential equations with separation variables, including finding particular solutions. (H7)
- Intepret the solution of a differential equation in the context of solving a problem, including identifying limitations of the solution; includes links to kinematics (H8)

and use Newton's first law (R1)

٠

- Understand and use Newton's second law for motion in a straight line (restricted to forces in two perpendicular directions or simple cases of forces given as 2-D vectors); extend to situations where forces need to be resolved (restricted to 2 dimensions) (R2)
- Understand and use weight and motion in a straight line under gravity; gravitational acceleration, g, and its value in S1 units to varying degrees of accuracy (R3)
- Understand and use ٠ Newton's third law; equilibrium of forces on a particle and motion in a straight line (restricted to forces in two perpendicular directions or simple cases of forces given as 2-D vectors); application to problems involving smooth pulleys and connected particles; resolving forces in 2 dimensions; equilibrium of a particle under coplanar forces (R4)
- Understand and use addition of forces; resultant forces; dynamics for motion in a plane (R5)

٠

Moments

Understand and use the F<=uR model for friction; coefficient of friction; motion of a body on a rough surface; limiting friction and static (R6)

 in a variety of contexts (C4) Differentiate simple functions and relations defined implicitly or parametrically, for first derivative only (G5) Integration (T2) Know and use the Fundamental Theorem of Calculus (H1) Integrate x^n (excluding n = -1) and related sums, differences and constant multiples. Integrate e^(kx), 1/x, sinkx, coskx and related sums, differences and constant multiples (H2) Evaluate definite integrals; use a definite integral to find the area under a curve and the area between two curves (H3) Understand and use integration as the limit 	 Understand and use the language of kinematics; position; displacement;distance travelled; velocity; speed;acceleration (Q1) Understand, use and interpret graphs in kinematics for motion in a straight line: displacement against time and interpretation of gradient; velocity against time and interpretation of gradient and are under the graph (Q2) Understand, use and derive the formulae for constant acceleration for motion in a straight line; extend to 2 dimensions using vectors (Q3) Use calculus in kinematics for motion in a straight line and extended 2 	Understand and use moments in simple static contexts. (S1)			
	gravity in a vertical				
	plane using vectors;				
	projectiles (Q5)				
		Sequence o	fTeaching		
		(T1 & T2 ru	n parallel)		
Key Topics/Subtopics:	Key Topics/Subtopics:	Key Topics/Subtopics:	Key Topics/Subtopics:	Key Topics/Subtopics:	Key Topics/Subtopics:
	<u> </u>				
ILC Half Torm 1	II C Half Torm 2	ILC: CONSOLIDATI	UN & KETRIEVAL	II C Half Torm 5	II C Half Torm 6
			SKILLS	1	
	l				

Formati	Formative Assessment Materials									
0	 Check Up and Interim MIB to go with each topic 									
Summa	Summative Assessment									
HT1 HT2 HT3 HT4 HT5 HT6										
0	Trigonometry	 Functions 	 Normal Distribution 		0	•				
0	Differentiation	 General Binomial 	 Hypothesis Testing 							
0	Integration	Expansion and	 Numerical Methods and 							
		Sequences and Series	Integration							
		 Differential Equations 	 Forces and Newtons Law 							
		 Kinematics 	 Moments 							
			Assessment Week R	esit (as applicable)						
CEIAGS	and Co-Curricular									
0	UKMT									
0	 Integral Maths Ritangle Team Competition 									
0	 SUMS - Steps to University for Maths Monthly Newsletter 									
0	Introduction to STEP and O	Oxbridge style interviews in the Summer	Term							