Overall Curriculum Goals

AQA - Teacher 1 Pure, Teacher 2 Discrete and Stats
 A Level Further Maths aims to encourage learners to:

- Answer questions that test the content synoptically
- apply the knowledge they have learnt throughout the course in unfamiliar areas

Half Term 1	Half Term 2	Half Term 3	Half Term 4	Half Term 5	Half Term 6
KEY IDEAS/CONCEPTS					
Complex Numbers (T1) Properties and arithmetic, solving polynomial equations, Argand diagrams, Modulusargument form and Loci	Inequalities and Rational Functions (T1) Solving Inequalities Graphs of rational functions	Matrics (T1) Properties and arithmetic Transformations, Systems of linear equations Proof (T1)	Polar Coordinates (T1) Convert between polar and cartesian coordinates Sketch curves with r given as a function of θ, including use of	knowledge learnt so far, practice applying knowledge to unfamiliar areas and prepare for Finals/ external exam	Differential Equations (T1) - Solve homogeneous differential equations by using the auxiliary equation (14)
Roots of Polynomials (T1) Roots of polynomials and forming polynomials with	Vectors (T1) Vector equation of a line Scalar product	Mathematical Induction	trigonometric functions.	After the AS External exam start A Level content: Differential Equations (T1)	- Solve nonhomogeneous differential
related roots	Finding distances	Mean Values Volume of revolution	Hyperbolic Functions (T1) Hyperbolic functions Inverse hyperbolic functions	- Find and use an integrating factor to solve differential	equations by solving the homogeneous case and adding a
Networks and Network Flows (T2)	Summing series Method of differences	Discrete Random Variables (T2) Discrete Distributions and	Derive and use the logarithmic forms of the inverse hyperbolic	equations and recognise when it is	particular integral to the complementary
Minimum spanning trees, the route inspection problem, the travelling salesperson problem.	Maclaurin series	expectations	functions. Recall and use identities	appropriate to do so. (I1)	CRV's (T2)
Interpret flow problems,	Activity network	Poisson Distribution		and particular	
maximum flow minimum cut	Critical activities and paths	Know the Poisson formula and	Chi Tests for association (T2)	solutions of	
theorem	Limitations and working in context	calculate Poisson probabilities Know mean, variance and	Contingency tables $\chi 2$ statistic with appropriate	differential equations (I2)	
Graph Theory (T2)		standard deviation of a Poisson	degrees of freedom	- Use differential	
Language of graphs,	Linear Programming (T2)	distribution.	Expected values	equations in	
Eulerian, semi eulerian,	Optimisation problems	Understand the distribution of	Sources of association	modelling in	
Hamiltonian Eulers formu	Graphical representation	the sum of independent		kinematics and	
Bipartite graphs, adjacency	Game Theory (T2)	Type I and Type II errors	Confidence intervals (T2) Confidence intervals for the	other contexts (13) Exponential Distribution (T2)	
matrix	Zero Sum games Mixed strategy games		mean of a normal distribution with known variance	Exponential Distribution (T2)	

Simple graphs, simple connected graphs and trees		Continuous Random Variables (T2) Probability density function Probability Menian and Quartiles Mean, Variance and standard deviation expectation and variance of linear functions of CRVs	contervervals from large samples, of the mean of a normal distribution with unknown variance. Make inferences from constructed or given confidence intervals.		

AQA - Teacher 1 Pure, Teacher 2 Discrete and Stats
 A Level Further Maths aims to encourage learners to:

- Answer questions that test the content synoptically
- apply the knowledge they have learnt throughout the course in unfamiliar areas

Half Term 1	Half Term 2	Half Term 3	Half Term 4	Half Term 5	Half Term 6
KEY IDEAS/CONCEPTS					
Complex Number (T1) - Understand de Moivre's Theorem and use it to find multiple angle formulae and sums of series (B8) - Know and use Euler's formula for complex numbers (B9) - Find the nth distinct roots of re^(itheta) for r not equal to 0 and know that they form the vertices of a regular n-gon in the Argand diagram. (B10) - Use complex roots of unity to solve geometric problems (B11)	Polar Graphs (T1) - Find the area enclosed by a polar curve (G3) Differential Equations (T1) - Find and use an integrating factor to solve differential equations and recognise when it is appropriate to do so. (I1) - Find both general and particular solutions of differential equations (12) - Use differential equations in modelling in kinematics and in other contexts (I3)	Matrices (T1) - Calculate determinants of $\mathbf{2 \times 2}$ matrices and 3×3 matrices and interpret as scale factors, including the effect on orientation (C5) - Understand and use singular and nonsingular matrices; properties of inverse matrices. Calculate and use the inverse of non-singular 2×2 matrices and 3×3 matrices (C6) - Solve three linear simultaneous equations in three variables by use of	Review + consolidate knowledge learnt so far, practice applying knowledge to unfamiliar areas and prepare for Finals	Review + consolidate knowledge learnt so far, practice applying knowledge to unfamiliar areas and prepare for Finals	

	- Solve homogeneous differential equations by using the auxiliary equation (14) - Solve nonhomogeneous differential equations by solving the homogeneous case and adding a particular integral to the complementary function (15) - Understand and use the relationship between cases when the discriminant of the auxiliary equation is positive, zero and negative and the form of solution of the differential equation (16) SHM, modelling damped oscillations and coupled equations (T1) - Solve the equation for SHM and relate the solution to the motion (17) - Model damped oscillations using second order differential equations and interpret their solutions. Understand light, critical and heavy damping and be able to determine when each will occur (18)	the inverse matrix (C7) - Interpret geometrically the solution and failure of solution of three simultaneous linear equations (C8) - Factorisation of determinants using rows and column operations (C9) - Find eigenvalues and eigenvectors of 2×2 and 3×3 matrices. Find and use the characteristic equation. Understand the geometrical significant of eigenvalues and eigenvectors (C10) - Diagonalisation of matrices when the eigenvalues are real (C11) Vectors (T1) - Understand and use the vector and Cartesian forms of the equation of a plane (F2) - Calculate the scalar product and use it to calculate the angle between two lines, to express the equation of a plane, and to calculate the angle between two plans and the angle between a line and a plane (F3)			

- Graphs of rational functions including cases when some of these coefficients are zero; asymptotes parallel to coordinate axes; oblique asymptotes (D13) - Single transformations of curves involving translations, stretches parallel to coordinate axes and reflections in the coordinate axes and the lines $y=x$ and y $=-x$. Extend to composite transformations including rotations and enlargements (D16) Hypothesis testing, Type I and II errors and Confidence Intervals (T2) - Test for the mean of a normal distribution with unknown variance using a tstatistic with appropriate degrees of freedom (SG1) - Construct symmetric confidence intervals for the mean of a normal distribution with known variance (SH1) - Construct symmetric confidence intervals from large samples, of the mean of a normal distribution	- Interpret a Simplex tableau (DD4) - Convert higher order games to linear programming problems and solve using Simplex algorithm (DF6)	including use of Cayley tables (DG8) - Recognise and use finite and infinite groups and their subgroups, including: groups of symmetries of regular polygons, cyclic groups and abelian groups (DG9) - Understand and use Lagrange's theorem (DG10) - Identity and use the generators of a group (DG11) - Recognise and find isomorphism between groups of finite order (DG12)			

- Know and use the convention that Ei should be greater than 5 (SE3)
- Identification of sources of association in the context of a question (SE4)
- Knowledge of when and how to apply Yates' correction (SE5)
- Find the mean,
variance and
standard deviation
for functions of a DRV (SA5)
Poisson Distribution (T2)
- Recap from year 12 coverage

CEIAGS and Co-Curricula

- UKMT
- Integral Maths Ritangle Team Competition
- SUMS - Steps to University for Maths Monthly Newsletter
- Introduction to STEP and Oxbridge style interviews in the Summer Term

