Key Stage 4: Year 10 (Please note that the content in bold is for higher only; standard and underlined type is for both higher and foundation)

Overall Curriculum Goals

 Pythagoras' Theorem and trigonometry, probability, transformations and constructions, fractions, decimals, percentages and ratio, and area and volume.
To develop fluent knowledge, skills and understanding of mathematical methods and concepts within each topic area

- To acquire, select and apply mathematical techniques to solve problems
- To reason mathematically, make deductions and inferences, and draw conclusions
- To comprehend, interpret and communicate mathematical information in a variety

Half Term 1
Indices and Standard Form

- order positive and
negative integers, decimals and fractions; use the
symbols $=, \neq,<,>, \leq$, \geq
- apply systematic listing strategies, including use of the product rule for
counting (i.e. if there are m ways of doing one task and for each of
these, there are n ways of doing another task, then the total number
of ways the two tasks can be done is $m \times n$ ways)
- use positive integer powers and associated real roots (square, cube and
higher), recognise
powers of $2,3,4,5$;
estimate powers and roots of
any given positive number
- calculate with roots, and
with integer and
fractional indices

calculate exactly with

fractions, surds and multiples of π; simplify surd expressions involving squares

| Half Term 2 |
| :--- | :--- |
| Angles, Pythagoras' Theorem an
 Trigonometry |

- use conventional terms and notations: points, lines, vertices, edges, planes,
parallel lines,
perpendicular lines, right angles, polygons, regular polygons
and polygons with reflection and/or rotation symmetries; use the standard
conventions for labelling and referring to the sides and angles of triangles; draw diagrams from written description
- apply the properties of angles at a point, angles at a point on a straight line,
vertically opposite angles; understand and use alternate and corresponding angles on parallel lines; derive and use the sum of angles in a triangle (e.g.
to deduce and use the angle sum in any polygon, and to derive properties of regular polygons)
- derive and apply the properties and definitions of: special types of
quadrilaterals, including square, rectangle
MATHS MOCK BASED ON TOPICS

TAUGHT UP TO CHRISTMAS

Probability

- record, describe and analyse the frequency of outcomes of probability
experiments using tables and frequency trees
- apply ideas of randomness, fairness and equally likely events to calculate expected outcomes of multiple future experiments
- relate relative expected frequencies to
theoretical probability, using
appropriate language and the 0-1 probability scale
apply the property that the probabilities of an exhaustive set of
outcomes
sum to one;
- apply the property that the probabilities of an exhaustive set of mutually exclusive events sum to one
- understand that empirical unbiased samples tend towards theoretical
probability distributions, with increasing sample size

	Half Term 4	Half
	Sequences and Graphs	FDP (CONT)

Sequences and Graphs
(CONT):
generate terms of a sequence from either a term-to-term or a positionto

term rule

recognise and use
sequences of triangular, square and cube
numbers, simple
arithmetic progressions,
Fibonacci type sequences,
quadratic sequences, and

- simple geometric
progressions ($r n$ where n
is an integer, and r is a rational
number >0 or a surd) and other sequences
- deduce expressions to calculate the nth term of linear and quadratic sequences

Graph

- work with coordinates in all four quadrants
- plot graphs of equations that correspond to straight-line graphs in the
coordinate plane; use the form $\mathbf{y}=\mathbf{m x}+\mathbf{c}$ to identify parallel and perpendicular lines; find the equation of the line
through two given points
or through one point
with a given gradient
FDP (CONT) Half Term 5

Half Term 6
Area and Volume
- know and apply

operations, including formal written methods, to integers, decimals and simple fractions (proper and improper), and mixed numbers -
all both positive and negative; understand and use place value
(e.g. when working with very large or very small numbers, and when calculating with decimals) - calculate exactly with fractions, surds and
multiples of π;
simplify surd
expressions involving

squares

(e.g. $\sqrt{ } 12=\sqrt{ }(4 \times 3)=$

$\sqrt{ } 4 \times \sqrt{ } 3=2 \sqrt{ } 3)$ and

rationalise

- work interchangeably with terminating decimals and their corresponding fractions (such as 3.5 and 7 2
or $\mathbf{0 . 3 7 5}$ or $\mathbf{3}$ 8
); change recurring decimals into their corresponding fractions and vice versa
- identify and work with fractions in ratio problems
formulae to calculate: area of triangles, parallelograms, trapezia; volume of cuboids and other right prisms (including cylinders)
- know the formulae circumference of a circle $=2 \pi r=\pi d$, area of a circle $=\pi r 2$; calculate: perimeters of 2D shapes, including circles; areas of circles and composite shapes; surface area and volume of spheres, pyramids, cones and composite solids
- calculate arc lengths angles and areas of sectors of circles
(e.g. $\sqrt{ } 12=\sqrt{ }(4 \times$
$3)=\sqrt{ } 4 \times \sqrt{ } 3=$ $3)=\sqrt{ } 4 \times \sqrt{ } 3=$
$2 \sqrt{3})$ and $2 \sqrt{3}$) and rationalise denominators
- calculate with and interpret standard form $\mathbf{A} \times 10 \mathbf{n}$, where $1 \leq \mathbf{A}<10$ and \mathbf{n} is an integer
- estimate answers check calculations using approximation and estimation, including answers obtained using technology

Algebra: manipulation and equations
simplify and manipulate algebraic expressions (including those involving
surds and algebraic
fractions) by:

- collecting like terms
- multiplying a single term
over a bracket
- taking out common factors
- expanding products of two
or more binomials
- factorising quadratic
expressions of the form $x 2+$
$b x+c$, including the
difference of two squares;
factorising quadratic
expressions of the
form $a x 2+b x+c$
simplifying
expressions involving
- sums, products and powers, including
the laws of indices
- understand and use standard mathematical formulae; rearrange formulae to
change the subject
know the difference between an equation and an identity; argue
mathematically to show algebraic expressions are
parallelogram,
trapezium, kite
and rhombus; and
triangles and other plane figures using appropriate language

know the

formulae for:
Pythagoras'
theorem $a 2+$
$b 2=c 2$, and
the
trigonometric
ratios, $\sin \theta=$
opposite
, $\cos \theta=$
adjacent
and

hypotenuse	hypotenuse

adjacent
; apply them to find angles and lengths in right-angled
triangles and, where
possible, general
triangles in two and
dimensional figures

- know the exact values of $\sin \theta$ and $\cos \theta$ for $\theta=0^{\circ}$, $30^{\circ}, 45^{\circ}, 60^{\circ}$ and 90°;
know the exact value of
$\tan \theta$ for $\theta=0^{\circ}, 30^{\circ}, 45^{\circ}$ and 60

know and apply the sine rule	a \sin A

$=\quad b$

$=\begin{aligned} & c \\ & \sin C\end{aligned}$

\bullet
and cosine rule $a 2=b 2$ $+c 2-2 b c \cos A$, to find unknown lengths and angles

- know and apply Area $=a b \sin C$
12
to calculate the area,
- enumerate sets and combinations of sets systematically, using tables, grids,
Venn diagrams and tree diagrams
construct theoretical possibility spaces for single and combined experiments
- calculate the probability of independent and dependent combined events,
including using tree diagrams and other representations, and know the
underlying assumptions
calculate and interpret conditional probabilities through representation through represe

frequencies with two-

way tables,

tree diagrams and Venn diagrams

Sequences and Graphs: generate terms of a sequence from either a term-to-term or a positionto
term rule
recognise and use
sequences of triangular, square and cube
numbers, simple
arithmetic progressions,
Fibonacci type sequences,
quadratic sequences, and

- simple geometric
progressions ($r n$ where n
is an integer, and r is a
rational
number >0 or a surd)
and other sequences
- deduce expressions to calculate the nth term
of linear and quadratic
sequences
raphs
- identify and interpret gradients and inter
of linear functions
graphically
and algebraically
- apply the four operations, including formal written methods, to integers,
decimals and simple fractions (proper and improper), and mixed numbers -
all both positive and negative; understand and use place value (e.g. when working with very large or very small numbers, and when calculating with decimals) - calculate exactly with fractions, surds and multiples of π;
simplify surd
expressions involving
squares
(e.g. $\sqrt{ } 12=\sqrt{ }(4 \times 3)=$ $\sqrt{ } 4 \times \sqrt{3}=2 \sqrt{ } 3$) and rationalise

denominators

- work interchangeably with terminating decimals and their corresponding
fractions (such as 3.5 and 7

2
or $\mathbf{0 . 3 7 5}$ or $\mathbf{3}$
8
); change recurring decimals into their corresponding
fractions and vice versa

- identify and work with fractions in ratio problems
- interpret fractions and percentages as operators
- express one quantity as a fraction of another, where the fraction is
interpret fractio
percentages as operators
- express one quantity as a fraction of another, where the fraction is less than
1 or greater than 1
- use ratio notation,
including reduction to simplest form
- divide a given quantity into two parts in a given part:part or part:whole ratio; express the division of a quantity into two parts as a ratio; apply ratio to real contexts and problems (such as those involving conversion, comparison, scaling, mixing, concentrations)
- define percentage as number of parts per hundred'; interpret percentages and percentage changes as a fraction or a decimal, and interpret these
multiplicatively; express one quantity as a percentage of another; compare
two quantities using percentages; work with percentages greater than 100%;
solve problems involving percentage change, including percentage increase/decrease and original value problems, and simple interest including
in financial mathematics Transformations
- identify, describe and construct congruent

division, remainder, operation, estimate, power, roots, factor, multiple, primes, square, cube, even, odd, surd, rational, irrational standard form, simplify Expression, identity, equation, formula, substitute, term, 'like' terms, index, power, negative and fractional indices, collect, substitute, expand, bracket, factor, factorise, quadratic, linear, simplify, approximate, arithmetic, geometric, function, sequence, nth term, derive	parallel,corresponding, alternate, co-interior,vertices, edge, face, sides,Pythagoras' Theorem, sine,cosine, tan, trigonometry,opposite, hypotenuse,adjacent, ratio, elevation,depression, segment, length	outcomes,theoretical, relative frequency, Venn diagram, experimental linear, fairness, approximate, geometric, sequence, nth term, derive arithmetic, function,Rotation, reflection, translation, transformation, enlargement, scale factor, vector, centre, angle, direction, mirror line, centre of enlargement, describe, distance, similar, combinations, single, corresponding, constructions, compasses, protractor, bisector, bisect, line segment, perpendicular, loci, bearing	line segment, perpendicular, loci, bearing Addition, subtraction, multiplication, division, fractions, mixed, improper, recurring, reciprocal, integer, decimal, termination, percentage, VAT, increase, decrease, multiplier, profit, loss, ratio, proportion, share, parts	vector, centre, angle, direction, mirror line, centre of enlargement, describe, distance, congruence, similar, combinations, single, corresponding, Triangle, rectangle, parallelogram, trapezium, area, perimeter, formula, length, width, prism, compound, measurement, polygon, cuboid, volume, nets, isometric, symmetry, vertices, edge, face, circle, segment, arc, sector, cylinder, circumference, radius, diameter, pi, composite, sphere, cone, capacity, hemisphere, segment, frustum, bounds, accuracy, surface area	square, factorise, rearrange, surd, function, solve, circle, sets, union, intersection
CEIAGS AND Extra Curricular					
Scientist, Astronomer, Air traffic controller, carpenter, nutritionist ADDITIONAL MATHS FSMQ RUNS THROUGHOUT THE YEAR	Artist, /construction, astronomy, cartoonist, cartologist, crime scene investigators ADDITIONAL MATHS FSMQ RUNS THROUGHOUT THE YEAR	Fashion designer, plumber, game developer, interior designer, cartologist, surveyor ADDITIONAL MATHS FSMQ RUNS THROUGHOUT THE YEAR UKMT CHALLENGES	Accountant, banker, retail or food sector, pharmacist, doctor, health staff, chef, dietitian ADDITIONAL MATHS FSMQ RUNS THROUGHOUT THE YEAR	Painter, chemist, dentist, builder ADDITIONAL MATHS FSMQ RUNS THROUGHOUT THE YEAR UKMT CHALLENGES	Business manager, financial analyst, computer programmer, research scientist ADDITIONAL MATHS FSMQ RUNS THROUGHOUT THE YEAR
UKMT CHALLENGES	UKMT CHALLENGES	THROUGHOUT THE YEAR		THROUGHOUT THE YEAR	
THROUGHOUT THE YEAR	UKMT CHALLENGES THROUGHOUT THE YEAR	KS4 STUDY SUPPORT	UKMT CHALLENGES THROUGHOUT THE YEAR	KS4 STUDY SUPPORT	UKMT CHALLENGES THROUGHOUT THE YEAR
KS4 STUDY SUPPORT THROUYGHOUT THE YEAR	KS4 STUDY SUPPORT THROUGHOUT THE YEAR	THROUYGHOUT THE YEAR PUZZLE CLUB	KS4 STUDY SUPPORT THROUYGHOUT THE YEAR	THROUYGHOUT THE YEAR PUZZLE CLUB	KS4 STUDY SUPPORT THROUYGHOUT THE YEAR
PUZZLE CLUB THROUGHOUT THE YEAR	PUZZLE CLUB THROUGHOUT THE YEAR		PUZZLE CLUB THROUGHOUT THE YEAR	THROUGHOUT THE YEAR	PUZZLE CLUB THROUGHOUT THE YEAR

Key Stage 4: Year 11 (Please note that the content in bold is for higher only; standard and underlined type is for both higher and foundation)
Overall Curriculum Goals
 similarity and congruency, and trigonometric graphs and transformations of graphs.
To develop fluent knowledge, skills and understanding of mathematical methods and concepts within each topic are

- To acquire, select and apply mathematical techniques to solve problems
- To reason mathematically, make deductions and inferences, and draw conclusions
- To comprehend, interpret and communicate mathematical information in a variety
of forms appropriate to the information and context
- To establish examination techniques for three terminal papers of a synoptic nature

Graphs, including quadratics and

simultaneous equations

- identify and interpret
roots, intercepts, turning points of quadratic
functions graphically; deduce roots algebraically and turning points by completing the square
- solve quadratic equations (including those that require rearrangement) algebraically by factorising, by completing the square and by using the quadratic formula; find approximate solutions using a graph
- solve linear inequalities in one or two variable(s), and quadratic
inequalities in one variable; represent the solution set on a number line,
using set notation and on a graph
Vectors
- describe translations as 2D vectors
- apply addition and subtraction of vectors, multiplication of vectors by a
scalar, and diagrammatic

Circle Theorems

- apply and prove the standard circle theorems concerning angles radii, tangents and chords, and use them to prove related results

Data

- infer properties of populations or distributions from a sample, while knowing the limitations of sampling
- interpret and construct tables, charts and diagrams, including frequency tables, bar charts, pie charts and pictograms for categorical data, vertical line charts for ungrouped discrete numerical data, tables and line graphs for time series data and know their appropriate use
- construct and interpret diagrams for grouped discrete data and continuous data, i.e. histograms with equal and

Work in this half term will be based also on topic areas identified from the mock exam

Trigonometric graphs and

 functions (HIGHER)- recognise, sketch and interpret graphs of linear functions, quadratic functions, simple cubic functions, the reciprocal function y
1
$=$ with $x \neq 0, x$
exponential
functions $y=k x$
for positive
values of k, and
the
trigonometric
functions (with arguments in
degrees) $y=\sin x$, $y=\cos x$ and $y=\tan x$ for angles of any size
- sketch
translations and reflections of a given function

Preparation for the second mock examinations through consolidation of topics.

Half Term 5

- Revision for GCSE Examinations
and column
representations of
vectors; use
vectors to construct
geometric arguments
and proofs and proofs

unequal class intervals and

 cumulative frequency graphs, and know their appropriate use- interpret anse and compare the distributions of data sets from univariate empirical
distributions
through: appropriate graphical representation involving discrete, continuous and grouped data, including box plots appropriate measures of central tendency (median, mean, mode and modal class) and spread (range, including consideration of outliers, quartiles and inter-quartile range)

Averages and Charts

- interpret, analyse and compare the distributions of data sets from univariate empirical distributions through: appropriate graphical representation involving discrete, continuous and grouped data, including box including box
plots appropriat plots appropriate
measures of central tendency (median, mean, mode and modal class) and spread (range, including consideration of

Similarity and congruency

- identify and apply circle definitions and properties, including: centre, radius, chord, diameter circumference, tangent, arc, sector and segment
- apply and prove the standard circle theorems concerning angles,
radii, tangents and chords, and use them to prove related results
- use the basic congruence criteria for triangles (SSS, SAS, ASA, RHS)

Similarity and congruency (repeat) - apply the concepts of congruence and similarity, including the relationships
between lengths, areas and volumes in similar figures

Constructions

- use conventional terms and notations: points, lines, vertices, edges, planes,
parallel lines,
perpendicular lines, right angles, polygons, regular polygons and polygons with reflection and/or rotation symmetries; use the standard conventions for labelling and referring to the sides and angles of triangles;
draw diagrams from written description
- use the standard ruler and compass constructions
(perpendicular bisector of a
line segment,

	outliers, quartiles and inter-quartile range) - use and interpret scatter graphs of bivariate data; recognise correlation and know that it does not indicate causation; draw estimated lines of best fit; make predictions; interpolate and extrapolate apparent trends while knowing the dangers of so doing Preparation for the mock examination	constructing a perpendicular to a given line from/at a given point, bisecting a given angle); use these to construct given figures and solve loci problems; know that the perpendicular distance from a point to a line is the shortest distance to the line - apply the properties of angles at a point, angles at a point on a straight line, vertically opposite angles; understand and use alternate and corresponding angles on parallel lines; derive and use the sum of angles in a triangle (e.g. to deduce and use the angle sum in any polygon, and to derive properties of regular polygons)			
Key Vocabulary/Concepts/Ideas					
Quadratic, solution, root, linear, solve, simultaneous, inequality, completing the square, factorise, rearrange, surd, function, solve, circle, sets, union, intersection	Vector, direction, magnitude, scalar, multiple, parallel, collinear, proof, ratio, column vector Radius, centre, tangent, circumference, diameter, gradient, perpendicular, reciprocal, coordinate, equation, substitution, chord, triangle, isosceles, angles, degrees, cyclic quadrilateral, alternate, segment, semicircle, arc, theorem Congruence, side, angle, compass, construction, shape, volume, length, area, volume, scale factor, enlargement, similar, perimeter, frustum	Radius, centre, tangent, circumference, diameter, gradient, perpendicular, reciprocal, coordinate, equation, substitution, chord, triangle, isosceles, angles, degrees, cyclic quadrilateral, alternate, segment, semicircle, arc, theorem Axes, coordinates, sine, cosine, tan, angle, graph, transformations, side, angle, inverse, square root, 2D, 3D, diagonal, plane, cuboid			

	Mean, median, mode, range, average, discrete, continuous, qualitative, quantitative, data, scatter graph, line of best fit, correlation, positive, negative, sample, population, stem and leaf, frequency, table, sort, pie chart, estimate				
CEIAGS AND Extra Curricular					
Business manager, financial analyst, computer programmer, research scientist, engineer, health care professional ADDITIONAL MATHS FSMQ RUNS THROUGHOUT THE YEAR UKMT CHALLENGES THROUGHOUT THE YEAR KS4 STUDY SUPPORT THROUYGHOUT THE YEAR PUZZLE CLUB THROUGHOUT THE YEAR	Data analyst, data scientist, logistics analyst, marketing analyst, logistics analyst. Market researcher, financial analyst, statistician, software engineer ADDITIONAL MATHS FSMQ RUNS THROUGHOUT THE YEAR UKMT CHALLENGES THROUGHOUT THE YEAR KS4 STUDY SUPPORT THROUYGHOUT THE YEAR PUZZLE CLUB THROUGHOUT THE YEAR	Sculptor, jewellerFarming, actuaries, constructionADDITIONAL MATHS FSMQ	Farming, electrician, actuaries, construction ADDITIONAL MATHS FSMQ RUNS THROUGHOUT THE YEAR UKMT CHALLENGES THROUGHOUT THE YEAR KS4 STUDY SUPPORT THROUYGHOUT THE YEAR PUZZLE CLUB THROUGHOUT THE YEAR MEM CHALLENGE		

